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Performance Evaluation of 

Distributed Computer-Communication Systems 

Leonard Kleinrock1 

Computer Science Department, University ot California 
Los Angeles, California 90024-1596. USA 

The computer-communication field is rich with extremely challenging problems 
for the queueing theorist. In this paper, we describe a number of computer- 
communication applications in wide-area networks, packet radio networks and 
local area networks. All of these involve sophisticated queueing theoretic 
models which have led to advanced applications of existing theory and in 
some cases, to new methods in queueing theory. A significant component in 
many of these applications is that ot multi-access to a common resource (typi- 
cally, a communication channel); we devote a significant portion of this paper 
to multi-access systems. In addition to identifying problems of interest to the 
queueing theorist, this paper summarizes the latest results for the mean 
response time of many current computer-communication applications 

1. INTRODUCTION 

The advent of the digital computer brought about a major rebirth in applied 
queueing theory. Indeed, since the early 1960's we have seen a sequence of 
applications in the information processing field which have challenged the 
capabilities of that theory and which have forced the theory to be extended in 
new directions. There is no reason to believe that thai challenge will subside 
for some time to come. 

The response to these challenges has produced some important extensions in 
queueing theory. For example, there has been a major (and largely successful) 
assault on queueing networks of various kinds. Some of the results are quite 
beautiful, and exhibit robustness in various directions (see (81]). We have also 
seen the development of some very important approximation techniques. 
Multi-access and broadcast communication problems have forced us to 
develop further analytical techniques. Many of the applications lead to coupled 
queues which involve two-dimensional queueing problems in the simplest 
cases, and higher dimensions in the usual cases: here too. new approaches in 
queueing theory have had to be developed (e.g.. the solution of Riemann- 
Hilbert problems). Due to the difficulty of many of these problems, we find 

1. This work was supported bv the Defense Applied Research Propels Agencs under Contract 
No. MDA 903-82-C-0064. 



2 L  Kleinrock 

that the theory has had to tread a very fine line between approximation and 
attention to detail. 

We organize this paper as follows. In Section 2. we discuss the problems 
inherent in sharing resources in a distributed environment. In Section 3. we 
discuss response time and 'power' as measures of system performance. Com- 
puter network performance analysis, design and buffer sharing are discussed in 
Section 4. A large number of multi-access schemes are described and 
evaluated in Section 5 (the largest section of this paper). Finally, in Section 6. 
a few ideas from the distributed processing field are presented. 

2. DISTRIBUTED RESOURCE SHARING AS A PROBLEM IN QUEUEING THEORY 

The earliest problems from information processing which we addressed using 
queueing theory were simple isolated problems (e.g.. memory access). Shortly 
thereafter, the first major class of problems arose in an attempt to analyze and 
design computer networks [55]. It was recognized immediately that the exact 
analysis of networks was hopelessly intractable and so some key (and sweep- 
ing) assumptions had to be introduced to allow for a solution (see Section 4.1). 
But this analysis was, in some sense, premature; in the mid-60's, the computer 
industry was not yet aware of the need for networks, and so very little work 
continued in this direction at that time. Instead, the advent of time sharing 
caught the fancy of the data processing industry. It was found that these sys- 
tems presented another major opportunity for the use of queueing theory to 
provide the tools for a proper analytic treatment (see LAVENBERG [81] for an 
excellent summary and history of this area). It was only in the late 60's that 
networking became fashionable and began to attract large numbers of 
researchers. Then, in the mid-70's, wireless communication systems (e.g.. 
broadcast satellite communications, packet radio, etc.) presented another set of 
challenges, and once again models, analyses and approximations were 
developed. The study of local area networks (LANs) followed in the early 80's 
and continues to occupy our attention up to the present time. 

A major driving force in all these developments was micro-electronics, i.e.. 
integrated chip technology. Of course, the major impact of VLSI was to radi- 
cally drop the cost of computing and this led to advances such as supercom- 
puters and personal computers: these, in turn, have led to parallel and distri- 
buted information processing systems. Indeed, distributed systems have 
emerged during this period in a variety of forms: distributed communications 
(e.g.. packet switching); distributed processing (e.g.. multiprocessing): distri- 
buted data base; and distributed control (e.g.. multi-access communications). 

There is a common theme shared by all of these systems, namely, the fact 
that they are all distributed. It is this that gives rise to some fascinating new 
problems for the queueing analyst. A distributed system represents a collec- 
tion of resources (servers) which are provided to serve a set of users (custo- 
mers). What makes these problems new is that users may not have convenient 
access to (nor knowledge of) all of these resources. 

Let us elaborate on this issue. In a classic single (or multiple) server svstem. 
all  users have access  to all  the resources (i.e..  anv  server can  serve anv 
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customer) and. in addition, all users can 'see' the queue (i.e., the users them- 
selves can observe which position they currently occupy in the queue). This is 
an ideal situation in that the server acts as a perfect dynamically shared 
resource. In a distributed system, we do not ordinarily have the luxury of such 
a perfectly organized queue. Let us list the ways in which a user may not have 
proper access to a resource: 

1.     The resource may be forbidden (completely inaccessible) to a user 
For example, if we had two separate single server systems, the second 
server is inaccessible to the first server*s customer stream. A simple study 
to quantify the cost of this inaccessibility was published in [82]. The 
model was that of M identical and independent M/M/l queues, each 
operating at a utilization factor, p. The quantity Q = ,P[at least one cus- 
tomer is waiting in some queue and at least one server is idle] was found 
to be equal to 

Q - 1 + (i -p/v-a+pri (2.1) 

Fig. 1 shows this function and clearly demonstrates that this distributed 
system invokes a large cost (as measured by Q) when A/»l for all values 
of p inside the unit interval. 

o.tX«\ e4   l >i We. 

FiGURE 1. Performance of M Ml Ml I aueueing systenn 
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A second (simple) way to quantify this cost of inaccessibility is to com- 
pare the mean response time, TM. for these M systems to the mean 
response time, T\, of a single M/M/l system serving the total input from 
the M streams and with a large server who is M times faster than each of 
those above. That is. if each of the M separate systems has an input rate 
X and a mean service time 3c, then the single large server system has an 
input rate M X and a mean service time x/M. In both cases, the server 
utilization is p — Xx.  From M/M/l theory [59], we find this ratio to be 

-y- ~ M (2.2) 

for all 0*Sp<l. This is another measure of the cost of forbidden 
resources, and is referred to as the 'economy of scale' principle in [64], 

2. The user may lack precise information about the state (i.e., the congestion) of 
a resource 
For example, in a computer network, a path must be chosen for a mes- 
sage to travel. The current congestion situation for channels which are 
many hops away from the current location of the message may only be 
known approximately (due, say, to the method by which this information 
is collected and dispersed). 

3. The user may not have current information about the state of a resource 
The same example as for (2) applies here. State information may be pre- 
cise, but may be delayed before it is available to the message. 

4. Immediate and precise information provided to a user about a resource may 
become outdated by the time the user has an opportunity to use the resource 
The same example as for (2) applies here as well.   The difficulty here is 
that it takes some time for the message to make its way along the journey 
to distant channels. 

In order to provide users improved access to resources in distributed sys- 
tems, a number of procedures have been developed. These procedures are 
referred to as 'multi-access' procedures and fall into three canonical classes: 
1. Static assignment algorithms; 
2. Dynamic assignment algorithms; 
3. Random access algorithms. 
(See for example. [64].) Each access method is an attempt to overcome the 
inaccessibility problem created by the distributed nature of the system. Each is 
trying, in some sense, to make all users aware of the distributed queue in 
which they reside so as to allow the users to coordinate their access to the 
resources. Each method incurs a price for this coordination attempt as follows: 
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ALGORITHM EXAMPLE PRICE 

Static 

Dynamic 

Random 

FDMA 

Token Passing 

Ethernet 

Idle resources 

Control overhead 

Collisions 

TABLE 1. The price for distributed access 

By idle, we mean there is a resource available which some customer could have 
used, but was disallowed since it was assigned to another user (or group of 
users) who did not, at that time, need the resource; for example, a collection of 
separate M/M/l queues. Control overhead refers to the cost of the dynamic 
allocation of resources; for example, the time it takes to move the token 
around in token passing schemes. By collisions, we mean that two or more 
users attempt to use the same resource simultaneously, in which case, neither 
gets served; for example, this happens with the Ethernet access scheme when 
two or more users transmit on the common bus. 

With multi-access communications, another key quantity must be taken into 
account. This quantity involves three important system variables, namely. 

C =    capacity of the communication channel (bits/sec); 
b  =    the (average) number of bits in the packet to be transmitted; 
L = 'length" of the channel (measured in seconds and representing the time 

it takes from when the first bit is pumped into the channel until that bit 
appears at the output of the channel, i.e.. L is the channel propagation 
delay). 

The key quantity referred to above is denoted by a. and is defined as 

a = LC/b (2.3) 

which is readily seen to be the (dimensionless) ratio of the channel propagation 
delay (L) to the time (b/C) it takes to pump the packet into the channel. It is 
also equal to the number of packets which can be "pipelined' in the channel. 
The value of a turns out to be extremely important in determining svstem per- 
formance and therefore in system design. For example, let us calculate the 
value of a for four important computer communication cases: a local area net- 
work; a long-haul packet-switched network: a broadcast satellite svstem; and a 
long-haul fiber optic link. The assumptions and values for a corresponding to 
these cases are shown in Table 2: 
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SYSTEM C (Mbps) b (bits) L (microsec) a 

Local Net 10 1000 5 .05 

Packet Net .05 1000 20,000 1 

Satellite .05 1000 250,000 12.5 

Fiber Link 1000 1000 20,000 20,000 

TABLE 2. Some typical values for a=LC/b 

Thus we see that the value of a varies by a factor of 400,000 over this set of 
interesting problems. As we said, this value is a key determinant in system 
design. As an example, whereas the Ethernet local area network access scheme 
(carrier sense multiple access with collision detection - CSMA/CD - see Sec- 
tion 5.5.4) works well for a<l, it would be a disaster in all the other systems. 

Considerations such as those listed in this section have motivated a number 
of new queueing theoretic problems and solutions. We discuss some of these 
below, in the discussion of these applications, however, we focus on those 
aspects of distributed resource sharing for which queueing theory has a role to 
play; we will not address a number of other topics which may be of 
significance to an application area but which do not have a queueing theoretic 
component. 

3. PERFORMANCE MEASURES 

3.1. Response time 
We define the response time (sojourn time) of a system to be the interval from 
when a user generates a request for service until that service is complete. The 
mean response time is r = £[response time] where E[X] denotes the expected 
value of the ran Jom variable X. This is the major performance measure used 
in most queueing systems studies, particularly in computer communications. T 
is usually given as a function of the system load which measures the efficiency 
of the server. The load in queueing theory is usually denoted by p. In com- 
puter communications, we use the same symbol (p), but sometimes we use S. 
particularly when we discuss multi-access systems of certain types. Indeed, 
when the mean service time. (5F), is not a system design parameter, then we 
often consider 7" to be a function only of A. the system throughput (measured 
in units of customers per second). 

In many of the systems we discuss below, the evaluation of T = Tip) is 
very difficult, and an explicit expression for this function is not available. In 
[65). a simple approximation for this function is offered which provides three 
degrees of freedom which allow the analyst to adjust the shape of T(p) to 
match the problem at hand. This approximation is 

Tip) = A^- 
P - p 

(3.1) 
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and is referred to as the 'ZAP' approximation. The three parameters are used 
as follows: 
1. The value of P (the pole) is equal to the maximum load the system can 

support (in classical queueing theory, this is P = 1; in the ALOHA system 
discussed below, it is P = \/e). 

2. The value of Z (the zero) is selected to adjust the relative shape of the 
growing delay function. If Z — P + i (for small, positive «). then we will 
have a mean response time function which has a very flat behavior over 
0 ^ p < P and a very sharp rise to infinity as p -* P. On the other hand. 
ifZ»PorifZ<0, then the mean response time will vary more smoothly 
over its range. 
A is selected to match the value of T(0)=AZ/P. We note that A and Z 
must both have the same sign. 

See Fig. 2 for typical cases. Often, this expression can be made to exactly 
match T{p) as, for example: M/D/l (Z = 2. A=x/2, P~\): FDMA with M 
users (Z = 2, A -Mxll, P = \); TDMA with M users (Z = l + M/2. A=x. 
/' = !); and others. 

3. 

30 

FIGURE 2. The ZAP approximation 
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3.2. Power 
Ideally, one would love to operate the system such that it would exhibit 
minimum delay and maximum throughput at the same time. In fact, this is 
possible for D/D/l. However, it is far from the case for most systems of 
interest. Therefore, one wonders where the 'appropriate' operating point should 
be. If you hate delay much more than you value efficiency, then you would be 
happy to operate in the vicinity of p near zero (giving minimum delay, but 
poor efficiency). On the other hand, if you consider efficiency much more 
important than delay, you would work much closer to the maximum allowable 
P (and suffer a large delay). Where, indeed should you operate? 

A quantity known as power, and denoted by P (not to be confused with the 
pole, P, from Section 3.1 nor with the number of processors, P, from Section 
6.2), was introduced in [36] and [140] which combined both mean response 
time and throughput into a single measure. Their definition is P=X/T = 
throughput/mean response time. Clearly, if this measures your relative prefer- 
ences, then you would like to maximize P. In [66], this optimization problem 
was addressed and it was shown that maximum power occurs whenever 

dT(X)/dX = T(X)/X. (3.2) 

It is trivial to see that in the T—X plane, this maximum power point occurs at 
that value of X where a ray out of the origin is tangent to the response time 
curve (and where this ray makes the smallest angle with the horizontal axis). 
See Fig. 3 for an example. In fact, this can be at a point where the mean 
response time has no derivative. 

It turns out for all M/G/l systems, that maximum power occurs at that X 
which produces Af=£[number of customers in system] = 1 exactly! In [68], this 
observation is discussed in terms of deterministic reasoning. It is found that 
N = 1 is a common invariant in these problems; this fact is exploited in a 
detailed study of power in [33] and in [47]. 

4. COMPUTER NETWORKS 

An enormous literature on computer networks has been created since the first 
comprehensive work was published by Kleinrock in 1964 [55]. In that work, he 
solved many of the basic network analysis and design problems. 

4.1. Analysis 
The two most significant quantities to solve for in a computer network are y. 
the network throughput (the average number of messages per second delivered 
to destinations) and T, the mean time a message spends in the network (the 
mean sojourn time in the network). Messages originate at their source node, 
follow some path through the network, and arrive at their destination nodes. 
When they reach an intermediate node along their path, they join a queue 
while awaiting transmission (over, say, channel i) to the next node in their 
journey. The mean time they spend waiting for. plus transmitting over, channel 
i is denoted by T,. Let X, denote the average number of messages per second 
passing over channel /, and let M denote the total number of communication 
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OPTIMAL 
OPERATING 

POINT 

THROUGHPUT 

FIGURE 3. The key system profile and power 

channels in the network. The following expression gives the exact relationship 
among these quantities [55]: 

2  — Tt. (4.1) 

This js easily proven with two applications of Little's result [59] as follows. 
Let N = £ [number of messages in the network]. The first application of 
Little's result at the network level gives 

y T = N. (4.2) 

Let N, — £ [number of messages waiting for or transmitting over channel /]. 
By assumption, if a message is in the network, it is either waiting for or 
transmitting over some network channel. Thus 

M 

N =  2 N- (4.3) 
= i 

The second application of Little's result at each network channel gives 
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N =   2  \ *",. (4.4) 
I = i 

From equations (4.2) and (4.4) we arrive at the result of equation (4.1)! Equa- 
tion (4.1) is the key equation for the exact analytical behavior of extremely 
general computer networks. 

In (4.1), the network throughput y can be found by summing all elements in 
the (given) traffic matrix; that is, we assume we are given the entries, fjk. in 
the traffic matrix (average number of messages entering the network per 
second with origin j and destination k). The channel traffic X, can be calcu- 
lated from the traffic matrix and the routing procedure. The difficult part of 
the evaluation is to calculate the mean response time, T„ for each channel 
queueing system. The source of the difficulty has to do with the correlation of 
a message's (i.e., a customer's) service time in successive network nodes. 

Fcr example, consider the simple two-node series network shown in Fig. 4. 
Here we assume that messages arrive to Node 1 from an external Poisson 
source at a rate of y messages per second, each with an exponentially chosen 
length (with an average of 1 /fi bits). The messages queue (FCFS) while await- 
ing transmission (service) from Node 1 to Node 2 over a noiseless communica- 
tion channel whose capacity is C bits/sec. Thus, the average transmission .Jtime 
on the channel is 1/fiC seconds. When a message is finished being transmitted 
from Node 1, it then joins a queue while awaiting transmission out of Node 2; 
we assume that the channel supporting this transmission also has a capacity of 
C bits per sec. After this second transmission, the message leaves the system. 
Of interest is the response time ( sojourn time) of the message in the network. 
Clearly, the first node acts as a simple M/M/l queue. However, the second 
node presents some difficult problems which come about since the service time 
of a message on the second channel is exactly the same as its service time on 
the first channel. This not only increases the dimensionality of the state space, 
but it also introduces a dependence between the sequence of interarrival times 
and service times in the second node. This two-node problem was posed in 
[55], and was not solved until 1979 when BOXMA [11] published a solution as 
the content of his doctorate work under J.W. Cohen. This solution applied 
only to the case where both channels had the same capacity! His solution was 
so involved that it provided further evidence that the general network (with 
arbitrary capacities, paths and topology) would likely never yield to an exact 
solution. 

O • MJ Co.Ij » O 

FIGURE 4. Two-node tandem net 

Recognizing this essential difficulty. Kleinrock introduced a bold 'Indepen- 
dence Assumption' which cracked the problem wide open and admitted a 
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straightforward solution. This (admittedly false) assumption states that a 
message's length is independent h' selected from the same exponential distribu- 
tion each time it enters a node. Using this assumption, KJeinrock could then 
model the network as an open queueing network (a Jackson network [49)) 
whose solution for the joint distribution of customer occupancy in each node 
has a product form. See [81] for a discussion of queueing networks. Consider- 
able experimental evidence supports the use of this model insofar as it has 
been used to calculate the mean sojourn time of messages in computer net- 
works. Indeed, using this assumption, each channel may be modeled as an 
independent M/M/l queueing system whose mean response time is simply 

T, = l   -   .    / = 1,2 M. (4.5) 
/xC, - A, 

Equations (4.1) and (4.5) form the simplest model for the mean response time 
in computer networks. The Jackson network solution also gives the joint distri- 
bution for customer occupancy, but does not give the distribution of sojourn 
time. WONG [137] found the sojourn distribution for a limited class of net- 
works (networks with no 'overtaking'); see also [54,89,136]. 

Equation (4.5) may be refined in a number of ways to account for a number 
of practical factors which we have neglected. These include, for example, the 
nodal processing time, the propagation delay, the transmission time from the 
exit node to the attached Host computer, the interference due to control traffic, 
etc. These refinements may be found in [64]. 

RUBIN [108] also studied the tandem queue (see Fig. 4). However, he 
allowed arbitrary channel capacities, an arbitrary number of nodes in the tan- 
dem, and a constant length for each arriving message. He was able to show 
that this tandem system could be modeled by an M/G/l queue and so the 
Pollaczek-Khinchin results for M/G/l solve this system completely. Unfor- 
tunately, his results do not extend to more complex topologies nor to ran- 
domly chosen message lengths. 

4.2. Design 
There are many aspects to the design of a computer network. Among these 
are: the choice of node locations; hardware structure of the node; software and 
protocol design; layered communication structure: topological structure: rout- 
ing procedure; and capacity of communication circuits. In addition, one must 
make a number of model assumptions such as: channel cost function (tariff): 
traffic matrix; message arrival process; "id message length distribution. 
Depending on the formulation of the design problem, the objective function 
and design constraints can exchange roles. In any case, one must consider: T. 
the mean system response time: D, the total dollar budget available to spend 
on the design; and some measure of network reliability. For a complete discus- 
sion of these issues see. for example. [64]. 

We may select two (equivalent) versions of the (optimal) design problem. 
The first is: 



12 

PROBLEM 1 

Minimize: 

With respect to: 

Subject to: 

Where: 

L. Kleinrock 

T = 2 — T,• = 2     r    \ 

Topological design 
Routing procedure 
Channel capacity assignment 

D = 2 4<ci) 
1 = 1 

and deliver the traffic specified in the traffic matrix 

Cj = Capacity of i-th channel 
dj(Cj)= cost (dollars) to supply C, units of capacity to 
the /-th channel 
M = Number of channels in nel 

An alternate (dual) to this problem statement is: 

PROBLEM 2 

Minimize: 
M 

D = 24(C) 
i=i 

With respect to: Topological design 
Routing procedure 
Channel capacity assignment 

Subject to: T «£ TMAX 

and deliver the traffic specified in the traffic matrix 

Where: TMAX is a given allowable maximum mean response time 

Clearly, the first problem asks us to minimize network delay at a fixed max- 
imum cost while the dual version asks us to minimize network cost while meet- 
ing a maximum network delay criterion. The reliabilitv constraint can be 
stated in a variety of ways; we do not discuss reliability in this paper. 

For design purposes, we usually make the simplest possible model assump- 
tions. Typically, these are: 

Exponentially distributed message lengths (mean l/> bits) 
Independence assumption 
Poisson message arrivals (at a rate of yjk messages/sec originating at node / 
and destined for node k) 
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Nodal switch locations preselected 
Nodal switches supplied at no cost 
Nodal processing times are negligible (infinite nodal processing speed) 
Propagation delay is zero (speed of light is infinite) 
No control traffic 

These assumptions lead us to a Jackson open network model as discussed 
above. Nevertheless, the optimal design problems stated above are still far too 
difficult to permit an exact solution. Therefore, the problem is usually decom- 
posed into simpler sub-problems. The 'cleanest' and most commonly discussed 
sub-problem is the 'Capacity Assignment Problem' which is Problem 1 above, 
in which the topology and the routing procedure (i.e., the \'s) are assumed to 
be given, and the only issue is to optimally spend D dollars to supply each of 
the M channels in the topology with a capacity so that the overall mean 
response time is minimized. The solution depends upon the form of the cost 
function 4(Q). The simplest case considered is the case of a linear cost func- 
tion, i.e.. 

d(C.) = diQ. 

For this optimal assignment, the (minimum) message delay is 

Q = 
*i     .     \De] 

M i = 1,2 M. 

(4.6) 

(4.7) 

2 VV/ 
;' = • 

De is defined below. For this case, the known solution [55] for the minimum T 
is: 

12 

T = 
n 

ftDe 

M 

2 V% *A 
i = i 

(4.8) 

with n = 2,
A
11A,/Y (is average path length). MEISTER. MULLER. and RUDIN 

[88] generalized this linear cost-capacity case by changing the objective func- 
tion from that given in PROBLEM 1 to the following 

pk)   - 
M     \ 

,=i y 

l/A 

(4.9) 

where T, is once again given in (4.5). The form for the optimum capacity and 
delay may be found in [64.88], 

We can generalize the capacity-cost function beyond that of linear to obtain 
other assignments and other performance equations. However, in all cases, we 
observe two invariants. First, all optimal capacity assignments require that the 
/-th channel be provided a minimum capacity of \/(t bits per sec. (otherwise 
the utilization factor for this channel would exceed unity). Second, a strict 
lower bound on the number of dollars necessary to provide a feasible solution 
to this problem for any cost function d,(C,) is 
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it        \ 
ß• =  2 4(—)• (4.10) 

1 = 1       ^ 

In (4.7) and (4.8), De is defined as De — D—D„^n. Without this minimum 
dollar expenditure, some channel will be overloaded, and then, from (4.1), we 
see that the mean response time will blow up. Thus, for all capacity-cost func- 
tions, the system feasibility condition is D > Dm„. 

A second subproblem assumes that the topology as well as the capacity 
assignment are given and one wishes to optimally route the traffic through the 
network to minimize delay; this is the 'Flow Assignment Problem'. That is, we 
wish to find the optimal A,'s subject to the constraint that we satisfy the 
requirements of the traffic matrix. This problem turns out to be that of minim- 
izing a convex function over a convex set; consequently, almost any valley- 
finding or steepest descent type of algorithm will work. A particularly effective 
method, known as the Flow Deviation Method, may be found in [31]; this 
method is based on queueing-theoretic principles. 

In order to 'solve' the more general problem, e.g., PROBLEM 2 above, one 
must resort to sub-optimal methods. We will not discuss these here, except to 
point out that a number of different heuristic methods have been developed, 
e.g., [30,38,39,40,64] and these all tend to give the same profile in the 
throughput versus network-cost plane. 

4.3. Buffer sharing 
An issue of importance in computer network implementation is that of buffer 
sharing. As messages (or packets) arrive at a node, they must be buffered while 
awaiting transmission out of that node. These nodes have a finite number of 
message buffers and so one would like to allocate these buffers in some 
appropriate fashion. 

The comprehensive model developed in [52) is as follows. Consider a single 
node with a storage capacity of B buffers. This node is subject to M indepen- 
dent Poisson inpu: streams, the w-th of which has a rate \m messages per 
second, and which must be transmitted out on the wi-th channel (of capacity 
Cm) leaving this node (m = 1,2, . . . .A/). Message lengths are exponentially 
distributed with a mean of 1/jt bits per message. The average message 
transmission (service) time is. therefore, simply l/f*Cm seconds on the m-lh 
channel. 

Thus, we have M M/M/l queueing systems which are coupled only through 
the fact that they share a common finite storage capacity of B buffers. If no 
space is available for an incoming message, this message is lost; all accepted 
messages are served in a first-come-first-serve fashion on their respective outgo- 
ing channels. Five buffer sharing schemes are considered in [52]. The first is 
Complete Partitioning (CP) in which the buffer space is permanently parti- 
tioned into M separate regions: no sharing at all is allowed in CP. At the other 
extreme is the second scheme. Complete Sharing (CS) in which all of the 
storage space is available to any incoming message, independent of which 
M/M/1 system it belongs to. Neither of these is satisfactory for all loading 
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conditions. In order to provide some, but not excessive, sharing, a third 
scheme is introduced known as Sharing with Maximum Queue Length 
(SMXQ). In this scheme, a maximum is placed on how many buffers may be 
utilized by each M/M/l system. SMXQ may not provide for full storage utili- 
zation under heavy traffic, and so a fourth scheme, known as Sharing with 
Minimum Allocation (SMA) is also included. This last provides a guaranteed 
minimum number of buffers for each of the traffic streams in addition to a 
common shared pool of buffers. However, the shared pool in SMA may be 
monopolized by a single stream unfairly, and so the fifth scheme considered is 
a combination of the last two, namely. Sharing with a Maximum Queue and 
Minimum Allocation (SMQMA). 

The sharing of the finite storage capacity introduces a dependency among 
the M queueing systems. However, the entire system is a birth-death queueing 
process [59] whose state vector is n = (n\,n2, . . . , nM) where nm is an integer 
random variable equal to the number of customers in the node from the m-th 
queueing system. The equilibrium probability associated with this vector is 
given by the well-known product form solution for closed queueing networks 
[4] as follows: 

\Cxp\'f>2- • • PM-   forn€Fx 

P(D) = P(nun2, . . . , n„) =    L otherwise <4n> 

where pm - Am/uCm. The subscript x refers to one of the five particular buffer 
allocation schemes described above, and Fx represents the set of allowed states 
for scheme x. The quantity Cx is simply the probability of an empty system 
for scheme x and is given by 

C,-' -    2P?P2'-..PM. (4.12) 
• GF, 

Having obtained the joint probability distribution for each scheme, one can 
then obtain the probability of blocking, the throughput and the average delay 
for the messages which successfully pass through this shared node. 

In [52], the five schemes are compared relative to blocking, throughput and 
mean response time. It is shown that for most loading situations, some restric- 
tion on the shared space is desirable. 

LAM and WONG [80] used closed queueing networks to model finite buffer 
behavior as well. They also used these tools to model window-controlled vir- 
tual channels in computer networks. 

5. MULTI-ACCESS COMMUNICATIONS 

Whenever we have a resource (a communications channel, a computer, a 
storage facility, a server of any sort) which may be requested by more than one 
user at a time, then we refer to this as a multi-access situation: clearly, one 
then requires a method for resolving this conflict, as discussed in Section 2. 

In Section 4, we discussed computer communication systems in which the 
connectivity was provided by point-to-point links. However, there are a 
number of communication systems which provide a broadcast link in which all 
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users hear every transmission. Examples of these systems are satellite broadcast 
systems, packet radio systems, and local area networks. Some authors reserve 
the term multi-access for such broadcast links, and we adopt that distinction in 
this section. The rules used for resolving conflicts in this environment are 
referred to as 'multi-access protocols'. 

The algorithms in this section (Section 5) represent practical implementa- 
tions in this environment and each must pay its price to nature (as described 
in Section 2). (See also [65]). 

5.1. Definitions and model assumptions 
Here we summarize the usual definitions and assumptions for models of 
multi-access systems. A number of these are relaxed or altered in specialized 
papers. 

1. The time to transmit a fixed length packet (of say, b bits) is referred to as 
a 'slot'. This duration is equal to blC seconds. 

2. A 'minislot' is the time required for all users in the broadcast environment 
to hear any user's transmission; that is, it is the system propagation delay, 
L seconds. 

3. The key parameter 'a' is the ratio of a minislot duration to a slot dura- 
tion. See (2.3). 

4. New arrivals to the total system come from a Poisson stream in the con- 
tinuous time case. In discrete time we allow a more general arrival pro- 
cess. In both cases, the arrival rate is A messages per second, or, in its nor- 
malized form, 5 packets per slot. 

5. Packets which are not successful must be retransmitted. The retransmis- 
sions plus the new transmissions form a Poisson process at a rate G pack- 
ets per slot. This is known as the 'bold' Poisson assumption and is a gross 
approximation to the actual state of affairs. 

6. A user (terminal) with a packet which must be retransmitted is said to be 
'backlogged'. 

7. The channel is a broadcast channel, i.e., all users are in range and line-of- 
sight of all other users (this is said to be a 'single-hop' environment). 

8. If more than one user transmits at the same time (in a single-hop environ- 
ment), a collision occurs. In this case, no transmissions are successful, 
and the identity of the transmitting users is not available to any users that 
hear the collision. If exactly one user transmits, it is assumed to he per- 
fectly received by all. 

9. When the user population is of infinite size we assume that the users are 
unbuffered. In this case, at most one packet may be held for transmission 
by a user. 

The notation we use is as follows. 
M = number of users 
C = channel capacity (bits/sec) 
b = (fixed) packet length (bits) 
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b/C = slot duration = packet transmission time (sec) 
x — E [message transmission time using the full capacity C] (sec) 
ß = E [message transmission time] (slots) = xC/b (slots) 
x2 — second moment of message transmission time (sec2) 
A = arrival rate to all M users (\/M to each user) (messages/sec) 
p = Xx =   utilization factor 
S = p =   throughput (packets/slot) 
<r = variance of number of messages (bulk) arriving in a slot 
L — propagation delay (sec) 
a = LC/b (slots) 
T — E [message response time] (sec) 
W — E [message waiting time] = T — x (sec) 

5.2. Taxonomy 
One useful way to distinguish the many multi-access protocols is to divide 
them into the three groups described in Section 2, namely, static, dynamic, and 
random. A static assignment algorithm assigns portions of the resource to the 
users in a predetermined (static) fashion. A dynamic algorithm makes the allo- 
cation 'on the fly' according to the current demand of the users. A random 
algorithm allows users to simultaneously access the resource (e.g.. the channel) 
to a greater or lesser extent (depending on the algorithm); whenever more than 
one user attempts to transmit in the same bandwidth at the same time in the 
same range, then a 'collision' occurs, and none of these attempts are successful. 
Below, we discuss some examples from each of these methods, focusing on the 
queueing aspects of the problems. 

Static assignment schemes perform very poorly at light load (e.g., at S = 0. 
FDMA has a mean response time equal to Mx) but do perform well at high 
load (indeed, FDMA can achieve a throughput approaching S = 1, the max- 
imum throughput for our channel). On the other hand, random access schemes 
(such as ALOHA) perform beautifully at light load, but very rapidly degrade 
as the load increases (e.g., ALOHA only supports a throughput of S <     2e). 

We now examine a number of these schemes broken down into the ihree 
groups discussed. Our major objective is to define the algorithm, provide some 
references, and (when possible) give the mean waiting time W. 

5.3. Static assignment algorithms 
In these schemes, the input traffic is partitioned into substreams and each sub- 
stream is assigned a portion of the communication resource on a permanent 
basis. This assignment may be done in a number of ways, the two most well- 
known being 

FDMA - Frequency Division Multiple Access 

TDMA - Time Division Multiple Access 



18 l Kleinrock 

In FDMA, the communication bandwidth is split into, say, M subchannels, 
each of which is assigned to one of M substreams into which the input traffic 
has been partitioned. The m-th substream (say with an arrival rate of \m mes- 
sages per second, each with message lengths drawn from some general distribu- 
tion with a mean message length of \/y. bits) can only be served by the m-th 
subchannel (say of capacity Cm bits per second). The load on the m-th queue 
is equal to 

Pm = —£- - K,xm. (5.1) 

For example, if each input traffic stream is Poisson at the rate \m — X/M. if 
the messages are all of a fixed size (1//* bits), and Cm = C/M. then each sub- 
system is an M/D/l system where the average time to transmit (service) a 
message is M/pC seconds. Note from the definition of If in Section 5.1 that 
it equals T — x where 3c = 1/pC, the time to service the message when the 
full capacity, C, of the channel is used. Thus, using [59], we have: 

W=T- 1/,* = V-P)M/PC - i/Mc 
2(1—p) 

and so 

W - (M - 2)0 - p) + M 
2 (1 - p) 

x. (5.2) 

where p = \//iC and 3c = 1/fiC. 
In TDMA, the time axis is partitioned into an infinite sequence of adjacent 

intervals. M subsequences are defined, with the m-th such subsequence preas- 
signed for the exclusive use of the m-th substream. Whenever an interval is 
assigned to the m-th substream, that implies that the entire channel bandwidth 
is to be used by that substream during that interval. Usually, the intervals are 
each of a fixed length (i.e., a slot), and the subsequences are derived in a 
'round-robin' fashion; that is, every m-th slot is assigned to the m-th sub- 
stream. This is usually referred to as 'synchronous' TDMA. If the resultant 
capacity assigned to the m-th substream is. again. Cm. then (5.1) applies to this 
substream. Again, if the input traffic is Poisson (\m = A/A/), the message 
transmission time is constant (and equal to a slot duration), and C„ — C/M. 
then we see that an arrival must wait, on average. M/2 (slots) until his 
substream's first assigned slot becomes available. If he finds, on average. A' 
messages from his substream upon his arrival, then he must wait an additional 
NM slots, on average, before he finally enters service; this is because each 
round-robin cycle takes exactly M slots.   Thus his mean wait W is 

M       — 
W - (-y + AW)*, 

where x = slot duration.   But. by Little's result. A' = i\/M)W.  Thus we find: 
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where p = XJ.  See (5.12) for a generalization of this result. 
In both cases, more general inputs produce a G/G/l queue for the subsys- 

tem. As stated in Section 2, the penalty for static assignment is that some of 
the system capacity may he idle when the m-th subsystem goes empty while 
another subsystem may have a queue of waiting messages. 

5.4. Dynamic assignment algorithms 

5.4.1. Asynchronous TDMA. This is a TDMA scheme in which the time axis is 
not slotted and is not preassigned, but rather the entire input stream forms a 
single queue which is served by the channel in some order (typically first- 
come-fixst-serve). Nowadays this is referred to as a statistical multiplexer. It 
is nothing more than a single-server queueing system and represents a perfect 
resource sharing device. 

Of course, we have assumed that all the users can form a single queue with 
no help from the system, which is an unrealistic assumption in most multi- 
access environments. In that sense, then, it represents an ideal model for 
multi-access and gives the minimum wait. In the case of M/D/l, we have the 
following [59] 

W =  - P *     • (5.4) 
2(l-p) 

5.4.2. Polling, Mini-Slotted Alternating Priority (MSAP) and token passing. Pol- 
ling is a well-known technique in telephony and many of these polling 
methods have been adopted in data communications. The classical method. 
roll-call polling, is such that a central station coordinates traffic from many 
users by broadcasting unique user addresses one at a time; when a user hears 
his address, he may transmit any data he has waiting [44,112,119). A second 
technique, hub-go-ahead polling, reduces the polling overhead by allowing con- 
trol to transfer b tween users directly [64,119]. This last technique was the 
predecessor to the token ring. Indeed, the major application of the mathemati- 
cal analysis of polling systems has been to local area network performance. 

An extensive literature has been developed on polling systems in the last few 
years. An excellent survey of many of the results from these studies is given in 
[119] and we refer the reader to this work for a complete list of references. 
Some of the early basic work on applying these techniques to analyzing 
computer-communication systems was done by ICAYE [53] and also bv 
KONHEIM and MEISTER [73] in which they exploited the theory of random 
walks. 

Let us now present some of the known results for polling systems, after 
which we apply these results to certain computer-communication systems. 

The typical polling model is that of a 'patrolling repairman' in which a 
server serves a finite number, M, of users by 'walking' from user to user look- 
ing for work to be done (messages to transmit), usually, it is assumed that he 
patrols the users in a cyclic fashion (this is the assumption we use for most of 
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this paper). The users may be modeled as unbuffered terminals or buffered ter- 
minals. The walking time between users may be fixed or random, with possibly 
different parameters for user pairs; the walking time in the model corresponds 
to the polling overhead in computer-communication systems. The amount of 
work that the server accepts upon finding a busy user may be: exhaustive {the 
server serves a given user untü that user's work is emptied); gated (the server 
serves all that work he finds upon arriving to the user, but accepts none of the 
work that arrives while he is serving that user - this work will be done on his 
next visit); or limited (the server will serve up to a fixed maximum amount of 
work (or number of customer arrivals at the user) each time he visits a user). 
New arrivals to a user arrive at a rate \/M messages per second, the rate 
summed over all M users being A messages per second. 

Of interest to the analysis is the polling cycle (the time from when a given 
user is polled until that user is polled again) and the message response time (the 
interval from when a message arrives until it is delivered). 

Below, we fist some of the known results for users that have infinite buffers 
and which are statistically identical (i.e., all users have the same distributions 
for the walking time between users, for the arrival process and for the message 
service time).  The additional notation is as follows: 

r = E {walking time between two terminals] (sec) 
R = Mr = E [walking (polling) time in a polling cycle] (sec) 
D — E (polling cycle] (sec) 
S2= variance of polling time between two terminals (sec2) 
Tm — E [time spent serving user m in a polling cycle] (sec) 

We begin by deriving an expression for the mean polling cycle duration of 
infinite buffer polling systems with an exhaustive service policy. For more gen- 
erality in this derivation, we temporarily let the walking time between termi- 
nals m and (m + 1) modulo M be equal to rm and we let \m be the arrival 
rate to terminal m. Since the cycle time is the sum of the polling (walking) 
time between users and the time spent transmitting messages at each stop in 
the cycle, we have 

M M 

*> =   2 r* +   2 Tm- 
m — 1 m — 1 

But Tm is simply the time needed to transmit all messages l'..A arrived in the 
previous polling cycle (whose mean duration is D). In D seconds, we will have, 
on average, XmD arrivals, each of which will take an average of x seconds to 
transmit. Thus. 

Tm = \m D x. 

Defining the utilization factor for the m-th user as p„, = \„,x. we have 
M 
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In the identical user case. rm = r, R = rM. Xm = X/M and 
pm = p/A/ = Xx/M and so 

D = -r^  (5.5) 
1 - p 

This result also applies to the gated service policy [74]. 
A useful conservation law was published in [56] which expressed a linear 

constraint on the set of mean waiting times (Wm) for M (work-conserving) 
priority groups in an M/G/l environment (m ~ 1,2, . . . ,M). That law states 
that 

M   

where the subscripts refer to the individual priority groups in the obvious way. 
For the three service policies we consider in this section (and more generally 
for mixtures of them), there have been developed pseudo-conservation laws as 
reported in [12,13]; these laws resemble that in (5.6). 

Next, we consider a discrete time system (with the time unit equal to one 
slot) using exhaustive polling in an environment with an arbitrary arrival pro- 
cess (with mean Xb/C, and variance a2, for the number of messages (i.e., the 
bulk size) arriving in a slot), an arbitrary discrete message service time distri- 
bution (with a mean x seconds and second moment x1), an arbitrary discrete 
walking time distribution (with mean r seconds and variance S2) and users 
with an infinite buffering capacity. The mean waiting time is given by [119] 

,       A?+ Ä<1 -£) + (££* -1)5 . &=*- + a * L. (5.7) 
2r 2(1 - p) 2C K     ' 

We comment that the study of the gambler's ruin problem is the key to analyz- 
ing this system [73]. 

For the continuous time version of the above discrete time problem, but 
with (non-bulk) Poisson message arrivals at rate X/M per second to each user, 
we have [119] 

" - i+    XL-«" • 
We now consider the same discrete time svstem discussed above, but here 

we adopt the gated service policy (as opposed to the exhaustive policy). The 
mean message waiting time is given by [ 119] 

W = f- +  ^ * b-- ,5.9) 
lr 2(1 - p) 1C 

Note that the mean wait for the gated system exceeds that of the exhaustive 
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system by the amount rp/{ 1 — p). 
For the continuous time version of this gated policy, we use the same 

assumptions as in the continuous time exhaustive problem discussed above and 
obtain [119] 

2        tf+w + JL) 
W = ±- + —-• (5.10) 

Ir 2(1-p) 

As in the discrete time case, we note that the mean wait for the gated system 
exceeds that of the exhaustive system by the amount rp/(\ — p). 

Let us now consider a discrete time system as above, but with a limited ser- 
vice policy. In particular, each time the ra-th user is polled, at most one (the 
limit) message will be transmitted. We find the mean wait to be [119] 

w=*- + M—£ A b__    5]1 
2r 2(l-p-rA) IC        V       ' 

The continuous time version of this limited service policy, with (non-bulk) 
Poisson arrivals, gives the following mean wait [119): 

X? + R(\ + -*-) + M2 

W = ±- + ^— • (5.12) 
2r 2(1 — p - rX) 

Let us now compare the mean wait for the three discrete time systems con- 
sidered above. The exhaustive policy is given in (5.7). the gated policy is given 
in (5.9), and the limited policy is given in (5.11). We observe that if 
a2 > X/Mß (e.g. the case or2 = X/Mß corresponds to Poisson arrivals), then 

^exhaustive   <   ^gated   **   ^limited- (5.13) 

Moreover, if we compare the mean wait for the thre« continuous time policies 
in the non-bulk cases, we compare (5.8), (5.10) and (5.12) and find that the 
inequalities given in (5.13) hold here as well. 

For the three continuous cases, we observe that in the limit as the walking 
time shrinks to zero (r~»0) and M—*oc, such that R and p remain constant, we 
have 

w - ^±£. 
Note that this is simply the classic M/G/l mean wait plus half the mean pol- 
ling cycle duration. 

The polling methods considered above all adhered to a cyclic polling order. 
In [72], a set of random polling systems is considered. The assumptions are the 
same as above (namely, M terminals with infinite buffers, discrete time, con- 
stant service time per packet equal to the slot size, general bulk arrival process, 
arbitrarily distributed walking time, and three service policies - exhaustive, 
gated and limited). However, the messages are all assumed to be exact Iv one 
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packet long (and therefore x — b/C seconds, x~ = x = (b/C)- and ß=\ 
slot). The essentially new component is the polling order. We now introduce 
Pm — /^terminal m is polled next]. This is clearly a memoryless random pol- 
ling policy. In the symmetrical case, Pm—p and the following results can be 
obtained [72]. First, we find that the mean duration of the polling cycle, £>. for 
the exhaustive and gated service policies once again is given as in (5.5). Next, 
we give expressions for the mean wait for the three service policies; we write 
these equations to allow an easy term-by-term comparison with the cyclic case. 
For the exhaustive case, we have 

s,        , + w-£) + (2£   .„  X(xY + R(\--fj) + (-Lv--l)3c+(/?-r) 

For the gated case, we have 

W = ^- + - ~- - ~ (5.15) 
ir 2(1—p) 2C 

\(xf + *(! + £) + (~-~\)x +(R-r) 

" = i+ ^W — -£•     (5I6> 
Lastly, for the limited case, we have 

Ir 

      MCA b 

(5.17) 

2(l-p-rA) 2C 

Note that the result comparing these three expressions with those for the cyclic 
case (see (5.13)), also holds for this random case. Moreover, the differences 
among the three mean waits in the cyclic case and in the random case are the 
same. 

As mentioned earlier, these polling system results have been applied to a 
number of computer-communication problems. In the remainder of this sec- 
tion, we discuss a few such applications. 

In [125] roll-call polling is used to model discrete-time message flow from a 
set of M packet radio terminals to a central receiving station. The central sta- 
tion sends a fixed length poll to each terminal inquiring about traffic. The 
(one-way) propagation delay is L seconds. The constant walking (polling) time 
is r - (2L + Tp) where Tp is the time to transmit the polling request; clearly, 
also, S2 = 0. The message packets have a constant length of b bits (and take 
x = b/C seconds to transmit over the channel of C bits/sec) and arrive 
according to a Poisson process at a rate of \/M messages per second at each 
terminal. As in (2.3), a = LC lb. The system throughput is simplv 
S — )Cx = p. For this application, the mean wait is given by (5.7) which 
yields 

S^ + (\-j-)R 
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If we convert this application to continuous time, then (5.8) gives 

W =  (5.19) 
2(1-S) 

Hub-go-ahead polling has been adapted in [69] to create the Mini Slotted 
Alternating Priority access scheme (MSAP) which was the predecessor of the 
token ring access method. (The Broadcast Recognizing Access Method 
(BRAM) [20] is similar to MSAP.) It is implemented by preassigning a cyclic 
polling sequence to the terminals and synchronizing their clocks. When the 
«i-th terminal finishes transmitting its messages, all other terminals will hear a 
silent period of L seconds (a minislot). At that point, terminal (m + 1) 
modulo M will recognize that it is his turn to transmit. If he has data, he 
transmits it and the process of 'token-passing' continues. If he has no data to 
send, then he remains silent and after another minislot of silence, terminal 
(m + 2) modulo M receives his turn, etc. In this case, r = L and again. 
S2 = 0. We then find from (5.7) that the normalized mean wait is 

S^+(l--^-)ML+(\-S)L 
W =  —  (5.20) 

2(1-S) 
C" 

The token ring has been treated by Bux [14] by applying (5.8). In the token 
ring, as in MSAP, a control token is circulated around a ring. Upon receiving 
a free token, a user has the right to transmit his message (using the exhaustive 
service policy); if he has any messages, he marks the token as busy and 
transmits his data on the ring local area network, addressing this data to his 
intended receiver. When the data returns to him after circulating around the 
ring, this user removes the data he transmitted and then marks the token as 
free. Applying our result, we have 

A^1 + (1 - jr)L 
W =  —  (5.21) 

2(1 - S) y      ' 

In the case of a gated service policy for the token ring, we may use (5.10) to 
obtain 

*? + <! + jf)L 
W =  (5.22) 

2(1 - S) K       ' 

In the case of a limited service policy, we have from (5.12) 

X? + (1 + j^)L 
W = — ^  (5.23) 

2(1 -5 - r\) 

These last two results were also given in [119] and [26]. In [26], De Moraes and 
Rubin also give the mean wait for the token bus. in which a token passes 
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along a bidirectional local area network bus among terminals which may not 
necessarily be adjacent on that bus. These expressions differ from those above 
only by the propagation delay which now increases to the entire length of the 
bus rather than the mter-terminal propagation delay used in the ring. 

We close this section by listing a few of the many other applications of these 
polling results to computer-communication problems. Polling with finite 
storage capacity is treated in [133]. Multiple servers are treated in [96] and 
[104]. The Fasnet system is evaluated in [45] and also in [130] which also 
evaluates Expressnet. Automatic repeat request (ARQ) retransmission systems 
may be found in [75]. Newhall loops (one of the first loops proposed) are dis- 
cussed in [18] and [19]. The register-insertion ring is analyzed in [46]. Nonsym- 
metric token rings are treated in [29]. 

5.4.3. Reservation protocols. Polling schemes (and Tree Access Schemes - see 
Section 5.5.3) are basically passive schemes in which users wait to be asked if 
they have any data to send. Reservation schemes allow the user to actively 
request access to the channel. The idea is that a portion of the channel time 
or bandwidth is set aside as a reservation subchannel. Users place reservations 
on the reservation subchannel for space on the data subchannel. Once the 
reservation is accepted, then the user is guaranteed space on the data subchan- 
nel, and everyone in the system knows that he has that space reserved. 

There are a large number of different reservation schemes described in the 
literature. Some of them appear as hybrid schemes which incorporate certain 
features of static and random assignment algorithms. In this section, we briefly 
describe a few of these. 

One of the first reservation schemes described was that of ROBERTS [107]. 
Here, the channel is slotted into data slots, with the occasional introduction of 
a reservation slot. A reservation slot is subdivided into a number of smaller 
slots (which are used for reserving data slots), and these slots are accessed by 
the users via slotted ALOHA (see Section 5.5.1). When a reservation makes it 
past the ALOHA contention, all users hear the request and schedule that user 
for the number of data slots he requested using the first available unassigned 
data slots; thus a 'queue in the sky' is maintained and does not require a cen- 
tral controller to do the scheduling. 

The Split channel Reservation Multiple Access scheme (SRMA) divides the 
channel by frequency division into the data and reservation channels [125]. It 
operates in one of two modes, depending on whether the reservation channel is 
used as a single channel (which carries both requests for space by the user and 
replies to these requests which give the user permission to begin transmitting) 
or as two control channels (one for requests and one for replies which schedule 
the request in the future). Control signals may compete for space on the 
request channel by any access scheme (e.g.. some random access scheme). 

Global Scheduling Multiple Access (GSMA) creates a reservation channel 
(for communicating to a central controller) and a data channel, both with no 
collisions using TDMA [83]. This is accomplished by using two subframes in 
each major frame. Each subframe consists of a number of slots. The control 



26 L. Kleinrock 

subframe has one slot assigned to each user for making his reservations. The 
central controller assigns slots in the data subframe according to the requests. 

In a satellite environment, Reservation-ALOHA [24] uses a frame consisting 
of a fixed number of equal sized slots; the frame is longer than the propaga- 
tion delay. A user who successfully transmitted in a given slot in the previous 
frame has the exclusive use of that slot in the next frame. If a slot was either 
idle or contained a collision in the previous frame, then it is 'up-for-grabs' by 
any user; such a slot is accessed using ALOHA. 

A similar scheme, the Round-Robin Reservation Scheme [7], uses the same 
frame structure, but guarantees that the number of slots in a frame exceeds the 
number of users. One slot in each frame is permanently assigned to each user. 
In addition to sending his data packets, a user appends to each packet a count 
of how many more packets he has queued. When a slot contains a count of 
zero, then it is assigned by some collision-free algorithm (in this case, by round 
robin) to another user. When the original 'owner' of a slot wishes to transmit 
and another user has been assigned his slot, then the original owner transmits, 
causing a collision, thereby announcing that he is taking his slot back. 

In [10] the Split Reservation Upon Collision (SRUC) access scheme is 
described. It uses fixed length slots, each of which is partitioned into a data 
subslot and a control subslot. Ordinarily, the data subslots are in the conten- 
tion mode, in which case, any user may access them. Whenever a collision 
occurs, however, all data subslots switch to the reserved mode which means 
that they will all be used to resolve the conflict only among those users who 
created the collision; no new users may enter the fray until the conflict is fully 
resolved. The control subchannel is used by a subset of the conflicting users to 
assist in the conflict resolution. The Tree access schemes of Section 5.5.3 
operate in a similar fashion. 

The Priority-Oriented Demand Assignment access method (PODA) uses 
implicit as well as explicit reservations, priorities, and centralized as well as 
distributed control [50]. The channel is divided into two subframes - a data 
subframe and a control subframe. The data subframe contains data and pig- 
gybacked control information. The control subframe is used to hasten the 
delivery of urgent control information. Control frame access can be any of a 
number of suitable types. The fraction of control versus data subframes can be 
dynamically adapted to loading conditions. 

Group Random Access (GRA) uses a TDMA access method, where groups 
of users (rather than individual users) share fixed TDMA slots using (possibly) 
different access schemes for each group [109.110]. 

5.5. Random assignment algorithms 
In these schemes, more than one user may attempt to use the channel at the 
same time, resulting in a collision; in this case no successful transmission 
occurs. On the other hand, one of the users may be lucky and find no one else 
using the channel, in which case he will be successful. Such schemes are dis- 
cussed in this section. 
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5.5.1. ALOHA. ALOHA access schemes are, in some sense, the most random. 
Essentially no constraints are placed on the users; they are allowed to transmit 
any time they wish. Packets are assumed to be of fixed length {exactly one slot 
long). The ALOHA access algorithm was introduced by ABRAMSON [1] in an 
unslotted environment (i.e., users were completely unsynchronized). The rela- 
tionship between the input 5 and the channel traffic G (recall we are using the 
bold Poisson assumption) is 

S = Ge~2G. (5.24) 

This leads to a maximum throughput of S = \/2e = 0.184... (packets per 
slot) which occurs at G = 0.5. 

An improvement was recommended by ROBERTS [106] by going to a slotted 
system in which a minimal constraint was placed on users whereby they could 
begin transmission only at a slot boundary. That is, time was discretized into 
intervals exactly one slot in duration. With this modification, the 5, G rela- 
tionship becomes 

S = Ge~c. (5.25) 

The maximum throughput is now equal to S = Me — 0.368... and this 
occurs when G — \. At G = 1, the expected number of transmissions is 
exactly one (satisfying one's intuition regarding optimality). We saw this 
optimality point occur in our discussion of power in Section 3.2; it occurs in 
many other situations as well (see, for example, [138]). We note further that 
the expected number of transmissions required by a packet is simply G/S\ the 
expected number of unsuccessful transmissions is (G/S) — 1. In 1973, 
ABRAMSON [2] analyzed the throughput for slotted ALOHA systems with a 
finite number of users. He found, among other things, that the maximum 
throughput profile occurred when G = 1, exactly as with the infinite popula- 
tion model. 

In 1973, KLEINROCK and LAM [57,76] established the equations for the mean 
response time of the slotted ALOHA system. (It was no surprise to find that 
the behavior at light load is excellent, but that it badly degrades as the load 
increases toward S — \/e). 

This analysis for an infinite population slotted ALOHA model used the bold 
Poisson assumption and assumed that retransmissions were uniformly selected 
over the next K slots once a user learned that his packet was unsuccessful; 
among the results obtained there was the following for the mean wait: 

W= 1-=- 
CK    2    ' 

where 

and 

-c 
K + f 

+ L. (5.26) 

(5.27) 
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and 
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(5.28) 

(5.29) 

The detailed behavior of slotted ALOHA with a finite population of M 
unbuffered terminals may be described by a discrete-time Markov chain given 
by the number of backlogged terminals at the slot boundaries [60.76]. Only 
when a terminal's buffer is empty may a new packet be generated (by the 
terminal's external source) and this will occur with probability o in a slot. The 
combined input rate into all terminals at time (slot) t is denoted by S(t). For 
this Markov chain analysis, we define p to be the probability that a backlogged 
packet retransmits in the next slot (of duration x seconds) and often is taken 
as a given parameter of the problem. Thus, the retransmission delay is 
geometrically distributed with a mean of x/p seconds. We let N(t) be a ran- 
dom variable representing the total number of backlogged terminals at slot / 
(referred to as the channel backlog at /). The vector \N(t\ S(i)] is the channel 
load at time t. For N(t) = n we have 

[ N(t), S(t)} = [ n, (M - n) a ], 

giving rise to what we call the linear feedback model.   Let 

PlJ - P[N(t + 1) = j\N(t) = i]. 

Then, these one-step transition probabilities are simply [60.76] 

0, j<i-2, 

»p(l-/>)'-'(!-°)M~\ j=i-l. 
{l-ip(\-Py-]tl-a)M-,+ 

(A/-/)oo-<o"~'~,(i-/>y. >=/. 

(5.30) 

P<j (5.31) 
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[M 
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oi-'(l~a)M~J, j»i +1 

One then does the usual Markov chain analysis to solve for the equilibrium 
distribution for N(t), namely, 

p„ =   lim P[N(t) = «], 
I —» oc 

by solving the system of equations, 
M 

Pn   =   *2P*Pm- 
i =0 
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and. of course, requiring the/?„'s to sum to unity. 
Given A'(f) = n, there is no guarantee that the channel input rate, S(t) and 

the channel output rate, which we denote by 5OU,(0. will be the same. In fact, 
given N(t) = n, we may solve for 5out(f) (which we denote by S„ul(n) when 
N(t) = n) to obtain 

Sout(n) = {\-prW-n)o(\-<,)M-"-x+np{\-pr-\\-o)M-n. (5.32) 

In the limit when M -> oo and o -^ 0 (such that Ma = 5), we have the 
infinite population model in which new packets are generated for transmission 
over the channel at the constant Poisson rate S (packets per slot); in this case. 
(5.32) gives 

5ou«(«) = (1 ~ p)"Se-s + np(\ ~prles. (5.33) 

Given that the input and output rates may differ, it was natural [58] to investi- 
gate the difference S(t) — •SoW(/) which has since come to be known as the 
drift; the drift is simply the expected growth of the channel backlog in a slot. 
If we assume a steady state (more on this later), then, following [128] the 
expected output rate, S, is given by 

S =  2 S«*in)pn, (5.34) 

and Nq the average number of backJogged terminals may be found from 

N, =   2 "P». (5.35) 

If we use Little's result, we find the mean wait in this slotted ALOHA system 
to be 

W = -4-- (5.36) 
S 

Since the output and input rate, on average, must be equal in equilibrium, we 
have 

S = (M - tf,)o (5.37) 

and so 

W = [(M/S) - (I/o)) x. (5.38) 

Let us examine the dynamic behavior somewhat further, if we assume the 
channel backlog is N(i) — n. then we may calculate Snu,(n) as a function of n 
and S(M). If we further identify the equilibrium contour to be the projection of 
the curve Sou,(«) = S(n) onto the (n,S(n)) plane (where we denote S(t) by 
S(n) when N(i) = n), then we obtain the curve as shown in Fig. 5. 
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•*S(n) 

FIGURE 5. The equilibrium contour 

In this figure, the shaded area corresponds to the region where the drift is 
negative (i.e., S^in) > S(n)) and N(t) tends to reduce; outside the shaded 
area, the drift is positive (S^in) < S(n)) and N(t) tends to increase. In Fig. 
6, we show four such curves along with the channel load line, 
n = M — S(n)/a (see (5.30)); these curves are obtained by selecting different 
values for the retransmission probability, p. The system is constrained to lie on 
the load line. If the system state is in the shaded region, then the backlog 
decreases down the load line; if not, it rises up the load line. Since we expect 
the system to he in the vicinity of the equilibrium contour, and since we 
require it to he on the channel load line, then any intersection of the load line 
with the equilibrium contour is a point to be studied. In Fig. 6a. we observe 
that there is only one such intersection which we refer to as the channel operat- 
ing point. We also observe that the drift will drive us back to this point if the 
system takes any excursion along the load line away from this point. Such a 
point (where the drift pulls us back) is a stable equilibrium point. If the svs- 
tem has only one such stable point, the channel is said to be stable. See Fig. 7a 
for the distribution of backlog for a stable channel. On the other hand, in Fig. 
6b, we see a case with three intersections, two of which are stable. The third 
(middle) point is such that the drift will drive us away from the intersection if 
we take a small excursion along the load line;  such a point is called an 
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unstable equilibrium point. A channel with two stable points and one 
unstable point is referred to as a bistable or an unstable channel; such a chan- 
nel will spend its time largely in the vicinity of the two stable points and will 
occasionally drift between the two (as can be seen from the backlog distribu- 
tion shown in Fig. 7b). Of the two stable points in Fig. 6b, the one with large 
backlog and small throughput is clearly undesirable and is referred to as the 
channel saturation point; the one with large throughput and small backlog is 
the (channel operating) point at which we would like to operate. In Fig. 6c, 
we show the case of an infinite population channel; clearly all infinite popula- 
tion channels are unstable unless some dynamic control policy is used (see 
below). An overloaded or saturated channel is one with a single stable operating 
point which occurs for large backlog and small throughput, as shown in Fig. 
6d; its backlog distribution may be seen in Fig. 7c. 
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The ideas regarding stability and equilibrium points described in [60.76] led 
FUKUDA [321 to develop a method known as Equilibrium Point Analysis (EPA): 
this method was extended by Tasaka who wrote a comprehensive monograph 
on the subject [122], The formal idea behind EPA is to assume thai the system 
is always at an equilibrium point (i.e. at a point of zero drift). Furthermore, in 
the EPA approach, the expectation of any random variable taken with respect 
to the channel backlog, N(t), is approximated by the value of that random 
variable at the equilibrium point. In [122], this method is applied to evaluate 
the throughput and mean delay for a number of multi-access schemes (Slotted 
ALOHA, Reservation ALOHA, TDMA. SRUC. buffered CSMA/CD - see 
below, and BRAM). 

For an analysis of slotted ALOHA with a finite number of buffered termi- 
nals, see [111,122]. 

The fundamental instability of ALOHA systems we have identified above 
was studied in [27,60,76]. In order to stabilize ALOHA, a number of dynamic 
control algorithms have been introduced and studied (e.g., 
[7,41,42,60,64,76,77,78,79,90,105,111]). These stabilization methods typically 
control either the input rate to the system or the retransmission parameters as 
a function of the backlog (or an estimate of the backlog). As an example of 
retransmission control, let us observe the behavior of the otherwise unstable 
channel shown in Fig. 6b. We see that as we move along the load line (due to 
statistical fluctuations), the drift is negative as long as n < nc. Suppose we 
track (perhaps only an estimate of) the backlog and find that n = nc; we are 
now in danger of entering the (unstable) region of positive drift for n > n(. 
However, if we now reduce p, the retransmission probability, then the equili- 
brium contour will change to that shown in Fig. 6a and we will once again 
find ourselves in a (stable) negative drift situation! Of course, this reduced 
value of p implies a longer delay between retransmissions which is not a desir- 
able situation. In order to remedy this, we switch back to the original value 
for p when n faUs below nc giving us negative drift and smaller retransmission 
delay once again. Thus, by tracking the backlog, n, we dynamically control 
the channel in a fashion which guarantees stability. 

Since ALOHA is fundamentally unstable, the performance of stabilized 
ALOHA is of interest. The distribution of delay is found numerically in [21] 
for a stabilized slotted ALOHA system. In [35], an approximate expression for 
the mean wait of a stabilized slotted ALOHA is given as 

W = JL 
c 

_ j_ 
t I (es ~  l)(f ~ 1) 

1 - eS - {Bs (eb - Die - 1) 
+ L.     (5.39) 
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5.5.2. The urn model. The URN scheme [67] was devised to behave like 
ALOHA at light load and TDMA at heavy load; thus, in some sense, it is an 
adaptive access scheme. Its principle of operation is to divide the population of 
conflicting users into subgroups each of which is likely to contain only one 
busy user and then to select one of the subgroups to transmit. In this scheme, 
we assume that we have a slotted channel supporting M user terminals. At the 
beginning of each slot, we assume that every user knows N, the exact number 
of users that have packets ready to send; they simply do not know the identity 
of these busy users. Based on this knowledge, what is the optimum way for 
this information to be used? 

If we require all users to behave in a symmetric fashion, i.e., each busy user 
will transmit into the next slot with an equal probability, say P. then the 
optimum policy is P = l/N. However, symmetric policies are clearly not 
optimum as can be seen in Fig. 8. This figure shows the throughput for 
M = 2 and N = 2 as a function of the probability of transmission for each of 
the two users. Indeed, the optimum (asymmetric) policy for this case is for one 
of the busy users to surely transmit (Pt = 1) and for the other to keep quiet 
(Pj = 0) where ij = 1,2, and i^j. However in a distributed environment it 
is difficult to select a single busy user when one only knows how many in the 
total population are busy. 

FIGURE 8. Throughput surface for two busv terminals 
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As shown in [67], the optimum policy, then, is to select a critical number of 
users, Ac, and to give each of these permission to transmit; the only users who 
will transmit are those that are both busy and selected. The value of Ar is 
chosen to maximize the throughput. This is equivalent to maximizing the pro- 
bability of selecting exactly one busy user; in this case, it will also be true that 
the expected number of busy users selected will be equal to unity. The value 
of A; is found from the following expression 

A: = it 
N 

(5.40) 

where [X\ denotes the integer part of X. In order to guarantee that all users 
select the same set of k users, one can require that each user use the same 
pseudorandom number generator to make the selection; in fact, it is only 
required that each user decide whether he, himself, is to be selected (again, 
using the same pseudorandom generator).  The throughput is given by 

M 
bin(M - 

M 
N 

,N - - 1) 

N bin (MJ v) 
(5.41) 

a\ where we have denoted the binomial coefficient as b'm{a,b) = 
b\(a — by 

The algorithm is quite robust, not even requiring that all users have exactly the 
same estimate of the number of backlogged users. 

5.5.3. Tree access schemes. Tree access algorithms (also known as splitting 
algorithms) represent a variation of the key idea in the URN model. Once 
again, we are interested in dividing up the potentially conflicting users into 
smaller groups, thereby reducing the difficulty of resolving the conflict. (Of 
course, polling and token passing represent a mechanism for reducing the 
number of competing users down to a single user.) The idea here is to find 
some property of the competing users which allows them to form subgroups; 
each subgroup will be resolved separately in some sequential fashion. The pro- 
cess may be applied recursively to further divide each subgroup into subsub- 
groups, etc. 

In 1978, a few months after the URN model was published. Hayes intro- 
duced a method known as 'probing' [43]. Independently, and at about the 
same time, CAPETANAKIS [15,16] and TSYBAKOV and MIKHAILOV [134] intro- 
duced the Tree Algorithm which has since had many refinements and improve- 
ments. Sometime later, Molle and KJeinrock published the Virtual Time 
CSMA protocol [93,94]. All of these fall into the class of Tree Access Schemes. 

In the probing algorithm, subgroups of users are polled rather than polling 
individual users. The idea is to attempt to eliminate many idle users simultane- 
ously. Each user is assumed to have a unique identifier (usually a binary 
address) which is used to form the subgroups. For example, suppose we had a 
population of 16 users.   By means of a centralized poller (or some equivalent 
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distributed polier), the entire population is simultaneously asked if anyone has 
a message to send. Any users with packets to transmit would respond in the 
affirmative by transmitting energy on the common channel. If a response is 
heard on the common channel, then the poller splits the population into two 
equal sized (sub)groups (say users 1 to 8 and users 9 to 16). The first group is 
then polled. If no answer returns (indicating that users 1 to 8 are idle), then 
the second group (9 to 16) is polled. Suppose, in fact, only the second group 
responds; it is then split further (into 9 to 12 and into 13 to 16). The process 
continues until a responding subgroup contains only one user, in which case 
the (single) user transmits his message. Then, the most recent responding sub- 
group is polled until it, too, is reduced to one responding user, etc. With such 
a procedure, large groups of idle users are eliminated very easily. It is also pos- 
sible to adjust the size of the groups polled according to the traffic load on the 
system. Indeed, the optimum size group to poll is such that the probability of 
finding that group idle is 0.5 based on information theoretic arguments. Hayes 
provides an analytic treatment of probing in his text [44]; there he solves for 
the cycle time behavior and for the mean message delay. 

The original Tree algorithm [16,134] operates as follows. When a collision 
occurs, say in the k-ih slot, then all users not involved in that collision suspend 
their activity until those involved in the collision fully resolve their conflict. 
The conflicting users randomly split into two subgroups (say using the same 
pseudorandom coin flips or based on the user's address or based on the arrival 
time of the user's packet). The first of these subgroups transmits in slot 
k + 1. If this results in an idle or a success^ then the second subgroup 
transmits in slot k + 2; otherwise, the second subgroup suspends (until the 
first subgroup resolves their conflict) and the first subgroup splits again into 
two further subsubgroups, etc. When all packets from this first subgroup are 
successfully transmitted, the second subgroup proceeds. When the second sub- 
group finishes, then all (or possibly, a subset whose size is selected optimally as 
a function of the traffic) of the originally suspended busy users, plus any new 
ones which turned busy during the previous conflict resolution period, will 
transmit and the process repeats. As shown in [16], the maximum throughput 
(for the case where number of users that come out of suspension is chosen 
optimally) is 0.43... packets per slot. A Tree access algorithm using ternary 
feedback (terminals can distinguish idle, success and collision slots), immediate 
transmission by newly generated packets and m-arv. as opposed to binary, 
splitting using minislots is presented in [99]; assuming .x = b/C and L = 0. 
they obtain 

'ae2a (1 - -Li^ <?-") 
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where a — Xb/C (packets per slot) and where we see the maximum 
throughput is 0.567... packets per slot. 

Improvements and variations to the basic Tree algorithm followed quickly 
after its introduction. For example, it can be seen that if a collision is followed 
by an idle slot from the first of two subgroups, then the second subgroup will 
surely generate a collision on the next slot (al! the colliding users from the first 
collision were clearly assigned to the second subgroup); in such a case, the 
second subgroup should be split in two immediately [84]. This increases the 
maximum system throughput to 0.46... packets per slot. Another improvement 
is to recognize that if one collision is followed by a second collision, then the 
subgroup that did not transmit in the second collision can properly be con- 
sidered as untested users and placed in the suspended group as if they had 
never transmitted. This leads to a first-come-first-serve Tree algorithm whose 
maximum throughput is 0.4871... ; see [34,35,92,102,135] for analyses of this 
first-come-first-serve algorithm and improvements of it which show that the 
maximum stable throughput achievable by any tree algorithm lies between 
0.4878 and 0.587. An approach to bounding the mean delay for a class of tree 
algorithms is given in [37]. In [103] a Tree algorithm using a packet admission 
algorithm based on windows in time is analyzed; there, they solve for the 
mean response time for a finite non-homogeneous Poisson user population. A 
study of adaptive polling which allows the polled terminals to respond using a 
richer alphabet (than binary) is given in [ 132]. 

We observe that the Tree algorithms described above take some advantage 
of the fact that users may be distinguished by their unique time of arrival (i.e., 
the time when they generate a new packet for transmission). This observation 
leads us to the Virtual Time CSMA (VTCSMA) protocol [93,94] which takes 
exquisite advantage of this distinction. In this protocol, which is actually a 
variation of the CSMA protocols described below in Section 5.5.4, each user 
keeps two clocks running. The first clock keeps track of real time. The second 
keeps track of virtual time (which, ideally, should be the same for al! users). 
The virtual time clock stops running whenever the channel is sensed busv; 
whenever the channel is idle it runs either at a rate 7) > 1 sec/sec (if virtual 
time is less than real time) or at a rate equal to unity (if virtual time and real 
time are the same). Thus the virtual time clock is never ahead of real time (and 
is often behind it). Whenever the arrival time of user's packet is passed by the 
virtual time clock, then that user will transmit his packet. This protocol greatlv 
increases the probability that a transmission will be successful on its first 
attempt. It is also quite robust, even allowing the individual virtual time clocks 
to drift relative to each other. The details as to what should be done when a 
collision occurs can be resolved by any of a number of existing protocols: 
VTCSMA is designed to assist the first transmission. MOLI.E [95] presents a 
delay model for VTCSMA (and other 'Moving Server' random access proto- 
cols): he finds that the mean wait until the first transmission is given bv 
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To approximate the overall mean wait for VTCSMA, one may use the expres- 
sion 

W • Wr + (-| - 1) TR + L, (5.44) 

where we recall that (G/S — 1) is the average number of retransmissions and 
TR is the mean delay caused by the retransmission protocol. In [86], a perfor- 
mance analysis of VTCSMA is given which studies the system stability and 
throughput; in [87], this analysis is extended and also an explicit expression for 
the mean wait is given. 

5.5.4. Carrier Sense Multiple Access - CSMA. When the key parameter a from 
Section 2 is small (a<l), then we may add some further intelligence to the 
simple ALOHA protocol to greatly improve its performance. The addition is 
to require that each user listen to ('sense' the carrier of) the channel before 
attempting any transmission. If the channel is sensed busy (either due to an 
ongoing successful transmission or a collision), then the user surely will not 
transmit, but will follow one of several protocols described below. If the chan- 
nel is sensed idle, then the user will follow a transmission policy which also 
depends upon the particular protocol. In all cases, we succeed in preventing a 
sure collision (as would have occurred in ALOHA) when a user begins 
transmitting while another user can be sensed to already be in the process of 
transmitting. These systems were first studied (in the environment of packet 
radio systems) by KLEINROCK and TOBAGI [59,123]. 

In all of the CSMA protocols, it is possible for two (or more) users to col- 
lide if a user senses the channel idle when, in fact, another user has just begun 
a transmission which has not yet 'reached' the listening user (i.e., the listening 
user senses the channel at a time that is less than a propagation delay from 
when the transmitting user began his transmission). Whenever a user detects 
that his transmission has been ruined by a collision, that user schedules the 
retransmission (i.e., he will once again sense the channel) at some later time 
according to a retransmission delay distribution. 

The first CSMA protocol is known as non-persistent CSMA. In this case, if 
the channel is sensed idle, the user will transmit his packet immediately. If the 
channel is sensed busy, the user acts as though there was a collision (see 
above) and at the rescheduled time, repeats the algorithm. 

The next CSMA protocol is known as 1-persistent CSMA. Here, again, the 
user will transmit if he senses the channel idle. If he senses the channel busy, 
then he continues to sense the channel until it goes idle and then, with proba- 
bility one, he will transmit. We observe that if more than one user senses the 
channel busy, then, when the channel goes idle, there will be a guaranteed col- 
lision. One way to help prevent the latter from occurring is given in the follow- 
ing protocol. 

The third protocol is referred to asp-persistent CSMA. It is identical to 1- 
persistent CSMA except that when the channel goes from busy to idle, a wait- 
ing user will  transmit with probability p.  With  probability   1 —p.  he will 
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reschedule his transmission by L seconds (see Section 2), that is, by one propa- 
gation delay (a minislot). If the channel is idle at this next attempt (i.e.. after 
one minislot), then he will transmit with probability p, etc. If it is sensed busy 
after this minislot, the user will act as if his packet met with a collision and 
will reschedule his transmission according to the retransmission delay distribu- 
tion. 

The S:G relationships for these three protocols (and variations) are as fol- 
lows (see [61,62,123]): 

Non-persistent CSMA 

Ge~aG 

G(\ + 2a) 4  t 

Slotted non-persistent CSMA 

S =   -   ,;,   ,     _aG; (5.45) 

s =        *Ge-aG       • (5.46) 

1 - e-"G + a 

1-persistent CSMA 
nn J. n -u „rin J. rz a. „r:/">xii,-Ga + la) 

(5.47) 5 _      Q\]_+_G_± aG(\ + G + aG/2)]e'ca T 2fl> 

G(\ + 2a) - (1 - e  aG) + (1 + aG)e~Gil T "> ' 

Slotted 1-persistent CSMA 

Ge-W+'^+a-e-*]      . $ 4g 

(1 + aXl - e  aG) + ae^G{l * •» ' 

p-persistent CSMA 

c^ » (1 - e-°G)[Ps'*0 + P,(\ - g0)] 
S(G, p, a) =  —— ; (5.49) 

(1 - e~aG)[at'ir0 + at(\ - mQ) + 1 + a] + aw0 

where Ps'. Ps, 7', t and w0 are defined in [62,123]. 
A delay analysis for CSMA is given in [127,128]. Stability considerations 

for CSMA protocols may be found in [25,35,85.126]. The analysis in [127.128] 
for non-persistent CSMA leads to a system of equations which must be 
evaluated numerically. However, as was the case with ALOHA, we find that 
CSMA is fundamentally unstable, and some form of control procedure must 
be used to render the system stable. In [35] a stabilization procedure is dis- 
cussed which adjusts the probability of retransmi'*'ng a backlogged packet as a 
function of the estimated number of backlogged packets in the system; this 
procedure is based on the procedure given in [77]. Upon optimizing this 
retransmission probability, the mean wait is approximated by 

2[1 - S(l + V2a)] 

An approximate analysis for p-persistent slotted CSMA with a finite number 
of buffered terminals is given in [115] which requires the numerical evaluation 
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of a set of equations. 
The CSMA protocols were first introduced for application in packet radio 

networks [51]. In such radio networks, it is relatively easy to sense the channel 
before you transmit over it; however, once a user begins transmission, it is 
imperative that his receiver be turned off. Thus, the user cannot monitor the 
channel while he is transmitting. However, in a wire-based local area network, 
it is perfectly feasible to 'listen while transmitting' as well as to 'listen before 
transmitting'. If one does sense the channel during transmission, then a user 
can detect if his transmission is destroyed by a collision that hits him after he 
starts. This is referred to as 'collision detection' (CD). This is often used with 
CSMA to produce yet another protocol, Carrier Sense Multiple Access with 
Collision Detection - CSMA /CD. In fact, this is the media access protocol 
used with Ethernet [91]. The form of carrier sense used with Ethernet is. in 
fact, 1-persistent; the guaranteed collisions which can occur with this CSMA 
protocol are quickly aborted using the CD capability. The throughput analysis 
for CSMA/CD is nicely treated in a unified fashion in [117,120]; an earlier 
treatment was given in [127]. For example, the S.G relationship for unslotted 
1-persistent CSMA/CD with an infinite population of users, is 

S =   G(l+bG)e~ia+b)G/ 

G(a+b)   l-(l+G)e-<1+fl)G (\+bG) ]-G(l-a-b) -ia+b)G 

+ e ~bG 2 + ^-(a + 5b) + jb(a +b)G2 (5.51) 

+ — (2bG + 3 + 2aG)(a + b )e ~(2fl + *>c 

4 

-G(l-fc)<>-(l+ö+*)C-^-2w; \-(l + 2aG)e-2a° 

collision detection time (normalized to an average packet transmis- where b = 
sion time). 

The first delay analyses for CSMA/CD were carried out under slightly 
different assumptions and approximations in [79,127]. The analysis in [127] 
for a finite population slotted non-persistent CSMA/CD system requires the 
numerical evaluation of a series of equations (as for CSMA). The analysis in 
[79] for an infinite population slotted p-persistent CSMA/CD svstem leads to 
the following explicit equation for the mean v.^it: 

W = 2L(1 + -) 
P 

1 -2AL 

x 
e-2A£) 

1 + L(p-3) (5.52) 

S— + SL + \±- + 2(x +1)— + 4L: (1 -t- 2-L^-) 
Iv 2 P P~ 

l-S-\L(l-t--) 
P 
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Here, C'(s) = 5*{i)^-ji and B'(s) is the Laplace transform of the service 
time probability density function. Analysis of a finite population of buffered 
terminals using CSMA/CD is provided in [23,115.116,121,122]. We point out 
that CSMA/CD is also unstable and requires a control procedure to stabilize 
it. In [35], the mean wait for an infinite population stabilized and optimized 
slotted p-persistent CSMA/CD system is given as 

-^- + L(23\ + S) 

W  s»   —  (5.53) 
1 - S(l+3.31a) 

An approach for the analysis of a number of random access schemes with a 
finite number of buffered terminals is given in [98]. 

5.5.5. Output processes. Let X be_the time between successful packet transmis- 
sions. If we can find its mean. A', then the inverse of this will be the system 
throughput; that is, S = MX. This approach was taken by Ferguson for 
ALOHA [28] and by Tobagi for ALOHA and CSMA [128], An extensive 
treatment using this 'output process' approach is given by TAKAGI and KLEIN- 

ROCK [117] for a number of random access protocols. In that treatment, 
memoryless protocols are defined to be those for which a user acts indepen- 
dently of the previous history of the system whenever he senses the channel 
idle. For these protocols, we view the channel as alternating between 'transmis- 
sion periods' (defined as a continuous interval during which at least one user is 
transmitting, or any transmission is being sensed) and 'idle periods' (defined as 
a continuous interval during which no transmissions are taking place or being 
sensed). An unsuccessful transmission period has a duration F, and a success- 
ful transmission period has duration T\ jui idle period has duration /. These 
random variables have means i\ T and 7 and pdf s whose Laplace transforms 
are F'(s), T'(s) and l'(s), respectively. Further, let X'(s) be the Laplace 
transform of the pdf for A", the interdeparture time of successful packets. 
Lastly, let y be the probability of a successful transmission once it has been 
started by breaking an idle period (y depends upon the protocol and other sys- 
tem parameters). As shown in [117], X'(s) is given by 

X* (s) = — 3LZM£]  (554) 

and the system throughput is given by 

S = 
i -1 

1 - y (7 + F) + 7 + f (5.55) 

These last two fundamental results may be applied to a number of random 
access protocols as shown in [117]. 
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5.5.6. Multi-hop systems. Essentially all of the material so far in this section 
has been devoted to the multi-access broadcast channel. An underlying 
assumption in these models is that all users can hear all other users. In a 
number of environments, particularly, in packet radio systems, this broadcast 
assumption is false. For example, users may not be in line-of-sight of each 
other or, they may not be in range of each other. In this case the connectivity 
is less than complete and the users are connected via a graph which describes 
who can hear whom. Thus, in order to send a packet from one user to another, 
it may be necessary to relay the packet through intermediate users (acting as 
repeaters for such packets). Whereas this routing problem creates many ana- 
lytic (and operational) problems, it also permits more than one successful 
transmission to take place simultaneously as long as these transmissions do not 
overlap at any of the receivers; this is referred to as 'spatial reuse' of the chan- 
nel. This environment is known as a 'multi-hop system'. 

The analytical problems associated with multi-hop systems are ferocious! A 
number of studies have been published which solve some very specialized 
aspects of certain models of the system, but to date, no satisfactory complete 
solution is available. 

One of the earliest studies of this problem was given in [63]. Another early 
study [124] investigated the 'hidden terminal problem' in which CSMA was 
shown to degrade badly if even a small fraction of the users could not be 
heard; in that same study, an access protocol known as 'Busy Tone Multiple 
Access' [124] was devised to solve this problem. Another study of BTMA is 
given in [113]. 

One must also study the effect of different transmission ranges on the system 
performance. Among the published works here, we include [3,4,8.97.114,118], 
A general rule for optimizing the system throughput was given in [138]; this 
rule states that a user should transmit at a rate and range such that the addi- 
tional throughput he achieves is exactly equal to the rate at which he destroys 
successful transmissions by other users. 

A nice approach to solving for the throughput and blocking probability of 
multi-hop packet radio systems was first presented in 1980 [8] and refined in 
[9], The key idea in this approach is to identify a set of busy (i.e., transmitting) 
terminals; under the appropriate assumptions regarding the channel traffic and 
the access method (e.g.. CSMA), the authors show that each such set of busy 
nodes represents a state in a Markov process. They show that the stationary 
probabilities for sets of busy terminals have a simple product form solution 
which depends on the message transmission times only through their mean 
(and not on the distribution); this is similar to the usual queueing network 
situation [4]. In [129], the underlying reversible Markov process was studied 
and, using the conditions necessary for an access protocol to have a product- 
form solution, they analyzed the throughput for a number of multi-hop chan- 
nel access schemes. 
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5.5.7. A macroscopic approach. Coupled queueing systems usually present enor- 
mous analytic complexity. Multi-hop packet radio networks represent one such 
example. (One notable exception is the class of product-form queueing net- 
works.) It does seem hopeless to attempt to track the exact behavior of each 
terminal in a multi-hop environment as the number of terminals grows. Yet 
queueing theory has traditionally required a fine-grained analysis of many 
interacting elements in order to evaluate coarse-grained equilibrium perfor- 
mance measures. However, a recent and novel approach to dealing with large 
distributed queueing systems is given in [100,101,139]. 

A sketch of the approach via an example follows. Consider a multi-hop 
packet radio system serving M terminals which use CSMA as their access 
method. Further assume that each terminal schedules new or retransmitted 
messages for transmission (i.e., listens to the channel for transmission of a 
message) according to a Poisson process at a rate \. Message lengths are 
assumed to be exponentially distributed with a mean of b bits and the channel 
speed is assumed to be C bits per second; thus the average message transmis- 
sion time (if successful) is 3c = blC seconds. Further, assume L = 0 (i.e., 
zero propagation delay). The equilibrium probability, Pk of having A: simul- 
taneous transmissions in the system, is given by 

as 

Pk - -E- - (5.56) 

where p = \x and ZM is the partition function of the system defined 

Z
M =   2 «(£fV. (5.57) 

(k) Here, ar-jj is the number of ways in which k terminals out of M can be 

transmitting at the same time. We recognize that the partition function is the 
generating function for the number of simultaneous transmissions in the sys- 
tem. Once the partition function is computed for a system, then one can 
obtain the system throughput, among other measures. Note the similarity of 
this approach to that of [8]. 

In [139], an analogy between this approach and that of statistical mechanics 
is made. Drawing upon an observation of Benes [6], it is observed that statisti- 
cal mechanics need not track the dynamics of the system to obtain the equili- 
brium behavior. In a series of papers ([100,101.139]). we are treated by the 
application of these ideas to a number of computer and communication exam- 
ples and to a correspondence between quantities from statistical mechanics and 
multi-access systems: microstate energy < = > size of set of independent 
transmissions; global energy < = > system throughput; volume occupied by a 
terminal < = > £]number of transmissions blocked by that terminal when it 
transmits]; pressure of a multi-access system < = > average rate of blocked 
transmissions; critical phase transition < = > discontinuous throughput 
behavior. One wonders if this intriguing approach will lead to a kinetic theory 
of packet motion in networks of many types. 
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6. DISTRIBUTED PROCESSING 

No discussion of performance evaluation would be complete without discuss- 
ing distributed processing systems; these play an important role in today's dis- 
tributed environment and create a greater need for suitable computer- 
communication networks. Moreover, they present a number of fascinating 
queueing theoretic problems of great interest. 

6.1. A simple model for distributed processing 
In [70], the question is posed, 'Is distributed processing any good?'. Surpris- 
ingly, the analysis there shows that it never improves performance. Let us 
review that analysis. 

The model is a rather simple one. We assume that a Poisson stream of 
arrivals (at rate X jobs per second) requires work from a processing system 
whose total processing power is C operations per second. Each arriving job 
requires an exponentially distributed number of operations, with an average of 
1/ji operations. However, rather than assuming a single processor of capacity 
C, we allow ourselves to consider a general series-parallel configuration as 
shown in Fig. 9. 

ni 
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^> 

FIGURE 9. The general series-parallel topology- 

There are m parallel chains, the /c-th of which contains nk processors in series. 
We have allocated the total system capacity among smaller processors such 
that each processor in the k-\h chain has the same capacity, Ck. Clear!v. the 
total system capacity (in operations/sec) is 

c = 2"*Q. (6.1) 

We assume that an entering job will randomly select the /c-th chain in which to 
be processed; the result of this selection produces a net Poisson flow of X* jobs 



Performance evaluation of distributed computer-communication systems 45 

per second on the /c-th chain. We further assume that each of the nk processors 
in this chain will do \/nk of the work necessary for this job and that each such 
processor takes an exponentially distributed time to complete the work (with 
mean l/^Q seconds). This assumption of individual exponentiality contra- 
dicts the earlier assumption of an exponentially distributed total job length, 
but we use it here for simplicity; an analysis which accounts for the Erlangian 
nature of these series chains may be found in [131]. Each processor in the /c-th 
chain has a utilization factor given by 

Pk = K^kQ. (6.2) 

Define 
T(p) =   E [response time for a job in the series-parallel network], 
70(p) = E [response time for a job served in a central processor of 

capacity C], 

We wish to calculate 7Xp)/7"0(p). Clearly, if distributed processing is to reduce 
the mean response time for jobs, then this ratio should be less than unity. 
Unfortunately, this is never true! As shown in [70], 

T0(P)      k%      P/(1 - P) 
(6.3) 

where p = X//iC. 
Some examples will illustrate the performance. For the case m = 1 and 

r\\ — n (the pure series chain), we have 

T(p)/T0(p) = n. (6.4) 

For the case nk = 1, C* = Clm and \k — \lm for k = 1,2, . . . , m (the 
pure parallel case), we have 

T(p)/T0{p) = m. (6.5) 

For the case nk = n, Ck = C/mn and \k = X/m for k = 1, 2, . . . , m (the 
symmetrical series-parallel case), we have 

T(p)/T0(p) = mn. (6.6) 

Things are just getting worse! It appears as though the mean response time is 
directly proportional to the number of processors over which we distribute the 
work. Indeed, for the general series-parallel case where all processors have the 
same utilization factor p — \/pC. we have 

m 

T(p)/T0(p) =   2"*- (6.7) 
k =1 

As discussed in [70], the practical justification for the great current interest 
in distributed processing (in spite of the pessimistic results just described) is 
due to the enormously reduced cost of microprocessors as opposed to main- 
frames. 
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6.2. A new class of queueing problems 
A computer job is often modelled as a collection of tasks which depend upon 
each other in some sequential fashion. These dependencies are often drawn as 
a partially ordered tree known as a computation graph for jobs. The level of 
resolution for tasks varies, as does the architecture for processing the job (see 
[71]). An example of a computation graph is given in Fig. 10. 

FIGURE 10. The graph model of computation 

The nodes represent tasks and the arrows represent dependencies in the sense 
that a task at the head end of an arrow cannot begin execution until the task 
at the tail end of the arrow is completed. Let us assume that each task 
requires a random amount of time to be processed (for simplicity, assume that 
each is exponentially distributed with rate p). Assume we have P processors 
which are available to work on the job and that not more than one processor 
may work on a given task.   When node (task) 1 is being processed, the job 
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proceeds at a rate ft. When it completes, node 2 begins and again the job 
proceeds at a rate fi. When it finishes, nodes 3 and 4 both become activated 
and, assuming at least two processors are available, the job then proceeds at a 
rate 2pi, etc. What we see is that the rate at which a job can absorb work 
depends upon where it is in its processing cycle (i.e., which tasks are currently 
being processed) and also depends upon how many processors are available to 
work on the job (other jobs may be competing for a finite number of proces- 
sors). Of course, we would like to handle the case of an arbitrary distribution 
of task times. The classic queueing model, shown in Fig. 1 la assumes that the 
rate at which a job can absorb work is constant, and that the total amount of 
work is a random variable, x. Specifically, we plot r(x)> the desired rate of 
service (seconds per second) as a function of the elapsed time in service 
(assuming no competition for service). In Fig. lib, we show a general picture 
for our new class of problems where the rate varies with the amount of service 
received. 

r(x) 

1 

-*- x 

a. Classical queueing 

*- x 

b. Sew queueing class 

FIGURE 11. Desired rare of service as a function of the elapsed time in sen ice 

To date, the class of queueing systems shown in Fig.   lib has not been 
solved. We point out that the work of COHEN [22] offers an approach to this 
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problem. Further, it has been shown in [5] for any computation graph (possi- 
bly randomly selected among the jobs), any service time distribution, any 
arrival process and any work-conserving processor scheduling algorithm, that 
B, the average number of busy processors, is given by 

(XX for XX < P, 
B - \ - (6.8) 

\p    for XX > />, 

where P is the number of processors available. X is the rate at which jobs 
arrive, and X is the average number of seconds of processing required by a 
job. 

7. CONCLUSIONS 

An enormous literature is devoted to the modeling, analysis and design of 
computer-communication systems. The thrust for this activity comes from the 
practical application areas of data communications and data processing. This 
same practical environment has forced the theoretician/engineer to find work- 
ing approximate (if not exact) solutions to some very difficult problems. 

Nevertheless, from a theoretical point of view, many of the interesting prob- 
lems are still unsolved. This has caused the queueing theorist to develop new 
techniques for many of these problems. The next few years will only increase 
the pressure and challenge to the theorist to keep up with the breakneck pace 
at which new problems arise. 
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